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The writers give an existence and uniqueness theorem for a nonlinear integrodifferential
equation which occurs in the statistical theory of turbulent diffusion. A numerical algorithm
is given and computational examples considered.

Consider the nonlinear integro-differential equation
t
w(t) + a(t)u(t) + f k(t, s)u(t — s)u(s)ds =f(t), O0<tr<L, ul0)=rc 0))
[

where the functions a(r), f(¢), and k(z, s) are continuous for 0 <t < L, 0 <s < L,

and c is a constant. Equations of this type occur as model equations for describing

turbulent diffusion (see Velikson [5] and Monin and Yaglom [4]). In this note we

prove an existence and uniqueness theorem for the equation and give a fourth-order

numerical algorithm for solving it. Computational examples are also given.
Equation (1) can be transformed to an equivalent integral equation. Let

A(t) == f  a(s) ds. Q)

0
Multiplying Eq. (1) by 4", we obtain

(e4Vu(1)) == eAVf(t) — eA? J.‘ k(t, s) u(t — 5) u(s) ds.
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INTEGRO-DIFFERENTIAL EQUATIONS

Integrating from O to ¢ and noting that #(0) == ¢, we have
t i
u(t) = ce—A® +J e-[AW-AIf (5) dr ,_j e~ A(t)-4(0))
[} 0
x [ ko, ) ulo — 5) u(s) ds do,
o
which is equivalent to Eq. (1). Let

(Fa))(t) = ce~A® 4 ft e-TAW—AMf(7) dr

1 G
_ f e~TAW-A@) f k(o, 5) u(oc — ) u(s) ds do.
0 1]

Then Eq. (3) can be written as

ut) = (F@)@).

Let

ut) = ce—A® & fo ! e~LAD-A0If(7) dr
and

u (t) = (F(u,_))1), n=1,2,..
Let || u]] = maxyg<z | #(2)]. We have the following theorem.

THEOREM. Let a(t) = O for all t. If

L
el + [ 1 /@l dr <}
and

fOLJ.o" | k(a, 5)| ds do < 1,
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)

“

©)

(6)

)

©®)

®

then the sequence {u,} determined by (6) and (7) converges uniformly to a unique solution

of Eq. (1).
Proof. From (7), (4), and (6) we have

t
() = ce— AW 4 f e-TAO-401f (1) dr
0

% 13
_ f e-1AH—4(0)] f k(a, 8) upn_y(0 — $) Un_y(s) ds do
o 0

£ 4
= u(t) — fo e-lAb-A@)] fo k(o, 5) tn_1(0 — $) tin_y(s) ds do.
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Since a(t) = 0, we have by (2), A(¢) = 0 and increasing for all ¢. Thus

O] < ol 4 s [* [V Ko, )1 ds o, 1= 1,2,
It follows from (8) and (9) that
lwli<lel+ [ 17dr <4 (10)
and

L o
it | << thg I - 1l ey 12 fo jo | k(o, 5)| ds do < 1, 1)

forn=1,2,...
Now, for any i and j, we have

[(F))(®) — (F))®)l

< ft g~ l4t—A)] f ’ | k(o, s)| | u(o — ) us) — u(c — s) us)| ds do
0 0

< [ 1Ko, 501 1 1 — 5)5) — 5D -+ (Yo — 5) — o — ) di o
<l =[Gl 1) [ [ ko, 5 ds o

and hence

L a0
| Fus) — Fup)ll < |l s — w1 (o] + 1 w5 1) fo f | k(o, )| ds do.

Thus by (9), (10), and (11) there exists a positive number w << 1 such that
| Fu;) — Fu)ll < wllu; — u; |

for all i,j = 0,1, 2,.... Then by a standard argument similar to the proof of the
contraction mapping theorem (see, for example, Kolmogorov and Fomin [2]), one
can show that the sequence {u,} converges uniformly to a unique solution of Eq. (3).
This completes the proof.

We next give a stepwise procedure for finding the numerical solution of Eq. (1).
The method has O(#%) local truncation error. The algorithm allows us to express
each u, in terms of u; , i = 0, 1,..., n — 1, and thus avoid iterations. The convergence
of this numerical method is justified by Mocarsky’s theorem [3, p. 236].

Integrating Eq. (1) from O to ¢, we obtain

u(t) = u(0) — fo " a(r) w(r) dr + fo " f(r) dr — f: f: k(z, $) u(z — s) u(s) ds dz.  (12)
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To advance from ¢ = 0 to t+ = h we approximate the integrals by Simpson’s rule
to obtain

uy = uy — (h/6)(aguy + 4ay gty jn + astty) + (h/ 6)(ﬁ) + 4f1se )
— o4 k12 9) w2 — (s s+ [kl 5) ullh — sy u(s) ds]
0 0

where u, = u(0) = ¢, a, = a(0), ay,, = a(h/2), a; = a(h), f, = f(0), etc. Approxi-
mating the inner integrals by the trapezoidal rule, we have
uy = uy — (h|6)(aouy + 4ay oty + ayury) 4 (Bl6)(fy + 4frre + 1)
— (BO)k(h)2, O) uy jo1ay + k(h[2, h]2) gty 2]
— (B*/12)[k(h, 0) myuy + k(h, h) ugtsy]. (13)
For the u,,, terms we use the following approxxmatlons in order to have O(#*) starting

errors. For u,,, in the expression for fo a(t) u(r) dr, we apply the formula (see
Hildebrand [1, p. 117, Problem 6])

) = =IO I B0 ) g E I

(x — xg)(¥1 — X)

X1 — X

+

#'(xo) +g (x — X (x — xp) u"(§)
to obtain
Uy = 3y + g + (hj4) o'y + O(FP), a4

where o'y = 1'(0) = f(0) — a(0) u(0) = f(0) — ca(0). For u,,, in the expression for
the double integral, we approximate it by

s =ty + (R2) 'y . 1s)
Substituting (14) and (15) into (13) and solving for u, , we obtain
uy = Zy|Wy,
where
Zy = uy — (h/6) aguy — (h[2) ay oty — (H?[6) ayseud’y
+ (h/6)(fo + 4f1r2 + /1) — (B[6)[K(R/2, O) + K(h[2, h]2)[(uo + (h[2) o' o) uy
and

Wi =1+ (h/6)ai/s + a) + (B¥/12)[k(h, 0) + k(h, B)] u, .

581/26/2-4
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To obtain u, we evaluate Eq. (12) at ¢ = 2k and approximate the single integrals
with Simpson’s rule, the outer integral of the double integral with Simpson’s rule,
and the inner integral with the trapezoidal rule. We have

Uy = uy — (hf3)(aguty + 4ayy + asity) + (B/3)(fo + 411 +12)
— h*[3)[k(h, 0) uyty -+ k(h, h) ugi,)
— (h%3)[3k(2h, O) wyuy -+ k(2h, h) 1,2 + 3k(2h, 2h) ug,).

Solving for u, , we obtain

uy, = Z,|W,,
where
Zy = uy — (h[3)agky + 4ayuy) + (B3)(fo + 4f1 + /o)
— (2h2[3)[k(h, 0) + k(h, h)] uyu, — $h*k(2h, h) uy®
and

W, =1 + }ha, + Yh2[k(2h, 0) + k(2h, 2h)] u, .

To obtain u,, r = 3, 4,..., N, we integrate Eq. (1) from (r — 1)4 to rh and then
approximate the resulting equation using the Adams-Moulton 4* method. We have

Up = Upq — (h/lz)(sarur + 8a, vy — ar—z“r»z)
+ (B12)(5f; + 8fry — fr-2) — (h/12)[5 fm k(rh, 5) u(rh — s) u(s) ds
+8 N — 1) by $) ul(r — 1) b — 5) u(s) ds
~ = 2 by 5) w((r — 2) b — 5) u(s) ds]

We then approximate the inner integrals with the trapezoidal rule to obtain

U, = ty_y — (B12)(Sa,u, + 8a,_1u, 1 — ar_sthy_s)

+ W12, + 8fr — fr-9)

— (5h%/12) [%k(rh, 0) uuy + Tf k(rh, jh) u,_u; + 3k(rh, rh) uou,]
— @D [B — Dh Ot Y K = 1 sty
RO — 1A= 1)) |+ DB = 2 0t

3K = D bty T = D= D) ]
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Solving for u, , we have
u, =Z,|W,, r=23,4,.,N,
where
Z, = u;y — (W12)8ayqtyy — ar_gtty5) + (B/12)(5f; -+ 8f ;1 — fra)

— (5k%/12) rf k(rh, jh) u,_u; — (8h*[12) [%k((r — D h, 0) u,_quq

=1

r—2
TR = 1) e B = D) R = 1) )|
j=1
r—3
+ (h¥/12) [%k((r — 2 h, 0 u, gty + Y k((r — 2) h, jh) u,__u;
=1

+ k(@ —2h,(r—2)h) uour--z]

and
W, =1+ (5h/12) a, + (5K*28)[k(rh, 0) + k(rh, r)} u, .

We consider the following computational examples.

ExaMPLE 1
t

u'(t) + Le~u(t) + f Tt — sYu(s) ds = —Let + §1§ e, 0 <r <10,
0

u(0y = 1.

The exact solution is u(z) = e~

EXAMPLE 2

u'(t) — 7—_—}2_—1 u(t) -+ fot T 1)2] G FIp u(t — s)u(s) ds

1 1 )
_E[’+1—Wi)_2]’ 014,

u(0) = %

The exact solution is u(¢) = H(t + 1)2

Note that the conditions of our theorem are all satisfied. The approximate solutions
are computed using the above algorithm. We list in Tables I and II the resulting errors.
By error we mean

error = | exact value — approximate value |.

The programs are written in FORTRAN in double precision for the IBM 370/158
computer at The Cleveland State University.
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TABLE I
Errors for Example 1
t h=0.1 h = 0.05 h = 0.025
0.025 4.18 x 10-10
0.05 6.60 x 10~ 1.90 x 10-°
0.1 1.03 x 1077 2.84 x 10-® 6.95 x 10-10
0.2 4.01 x 107 1.94 x 10-° 1.77 x 10-°
0.3 9.46 x 10-® 3.56 x 10-8 1.06 x 108
0.4 4,74 x 1077 3.36 x 108 2.27 x 108
0.6 1.03 x 10-¢ 7.08 x 10-° 492 x 10-®
0.8 145 < 10-¢ 2.25 x 10-® 7.26 x 108
1.0 1.80 x 10-¢ 4,22 x 108 9.05 x 10-®
2.0 3.15 x 10-¢ 1.12 x 10-¢ 1.19 x 1077
4.0 4.17 x 10 9.08 x 10-® 1.12 x 107
6.0 4.33 x 10-¢ 111 x 107 1.10 x 107
8.0 4.35 x 10-¢ 1.13 x 107 1.09 x 107
10.0 4.36 x 10~ 1.14 x 107 1.09 x 107
TABLE I1
Errors for Example 2
t h=0.1 = 0.05 h = 0,025
0.025 1.00 x 10-°
0.05 1.57 x 10-8 7.68 x 10~
0.1 243 x 107 1.16 x 107 3.04 x 10-8
0.2 1.66 x 10-¢ 4.56 x 1077 1.15 x 10-7
0.3 375 x 10— 9.81 x 1077 2.47 x 10-7
0.4 6.48 x 10~ 1.67 x 10— 420 x 1077
0.6 1.37 x 10-% 3.48 x 108 8.71 x 107
0.8 2.28 x 10-% 578 x 10% 1.45 x 10-°
1.0 3.37 x 10-5 8.52 x 10-* 2.13 x 10-¢
2.0 1.10 x 10— 2.77 x 10~ 6.94 x 10—
3.0 2.18 x 10— 5.49 x 10— 1.37 x 10-3
4.0 3.55 x 10~ 8.92 x 105 2.23 x 1073
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